基于舰载雷达的海浪反演方法综述

刘猛猛, 蒋以山, 张琦超, 陈鑫, 李博晗, 刘家豪, 李千

装备环境工程 ›› 2025, Vol. 22 ›› Issue (9) : 1-11.

PDF(1607 KB)
PDF(1607 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (9) : 1-11. DOI: 10.7643/ issn.1672-9242.2025.09.001
专题——舰船装备可靠性

基于舰载雷达的海浪反演方法综述

  • 刘猛猛1, 蒋以山2, 张琦超2, 陈鑫3, 李博晗1, 刘家豪1, 李千1,*
作者信息 +

Review of Shipborne Radar-based Ocean Wave Inversion Methods

  • LIU Mengmeng1, JIANG Yishan2, ZHANG Qichao2, CHEN Xin3, LI Bohan1, LIU Jiahao1, LI Qian1,*
Author information +
文章历史 +

摘要

在系统梳理现有研究的基础上,深入分析了频谱反演、多普勒建模与深度学习等三大主流路径的核心原理、关键技术与适用边界,探讨了物理机制与数据特征之间的内在联系与模型互补性,指出了图像与频域建模的融合趋势,提出未来融合建模的发展方向。

Abstract

On the basis of systematically sorting out the existing research, the work aims to conduct an in-depth analysis on the core principles, key technologies, and application boundaries of the three mainstream approaches, including spectral inversion, Doppler-based modeling, and deep learning and furtherdiscuss the intrinsic relationships and complementarity between physical mechanisms and data characteristics, highlighting the emerging trend of integrating image-based and frequency-domain modeling, and putting forward future development directions for hybrid modeling frameworks.

关键词

舰载雷达 / 海浪反演 / 频谱分析 / 布拉格散射 / 多普勒频移 / 机器学习 / 海洋遥感

Key words

shipborne radar / ocean wave inversion / spectrum analysis / Bragg scattering / Doppler shift / machine learning / marine remote sensing

引用本文

导出引用
刘猛猛, 蒋以山, 张琦超, 陈鑫, 李博晗, 刘家豪, 李千. 基于舰载雷达的海浪反演方法综述[J]. 装备环境工程. 2025, 22(9): 1-11 https://doi.org/10.7643/ issn.1672-9242.2025.09.001
LIU Mengmeng, JIANG Yishan, ZHANG Qichao, CHEN Xin, LI Bohan, LIU Jiahao, LI Qian. Review of Shipborne Radar-based Ocean Wave Inversion Methods[J]. Equipment Environmental Engineering. 2025, 22(9): 1-11 https://doi.org/10.7643/ issn.1672-9242.2025.09.001
中图分类号: TG172   

参考文献

[1] 邹建武, 祝明波, 董巍. 海浪建模方法综述[J]. 舰船电子工程, 2010, 30(11): 10-14.
ZOU J W, ZHU M B, DONG W.An Overview of Ocean Wave Modeling[J]. Ship Electronic Engineering, 2010, 30(11): 10-14.
[2] 杨怀平, 孙家广. 基于海浪谱的波浪模拟[J]. 系统仿真学报, 2002, 14(9): 1175-1178.
YANG H P, SUN J G.Wave Simulation Based on Ocean Wave Spectrums[J]. Acta Simulata Systematica Sinica, 2002, 14(9): 1175-1178.
[3] 张筱荟. 基于X波段雷达的海浪信息提取与仿真技术研究[D]. 大连: 大连海事大学, 2023.
ZHANG X H.Research on Wave Information Extraction and Simulation Technology Based on X-Band Radar[D]. Dalian: Dalian Maritime University, 2023.
[4] HISAKI Y.Development of HF Radar Inversion Algorithm for Spectrum Estimation (HIAS)[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 1725-1740.
[5] 王雨辰. 基于舰载雷达的海杂波特性分析与仿真[J]. 环境技术, 2024, 42(3): 26-29.
WANG Y C.Analysis and Simulation of Sea Clutter Characteristics Based on Shipborne Radar[J]. Environmental Technology, 2024, 42(3): 26-29.
[6] KAZEMI S, YONEL B, YAZICI B.Interferometric Passive Radar Imaging with Deep Denoising Priors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(1): 145-156.
[7] TRIPATHI S P, CHAPRON B, COLLARD F, et al.Deep Learning Inversion of Ocean Wave Spectrum from SAR Satellite Observations[C]// ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Seoul, Korea, Republic of. IEEE, 2024: 8711-8715.
[8] 侯纪业, 陈江涛, 刘长江, 等. 一种舰载雷达海面目标检测处理方法[J]. 中国电子科学研究院学报, 2023, 18(3): 248-252.
HOU J Y, CHEN J T, LIU C J, et al.A Method of Sea Target Detection and Process for Shipborne Radar[J]. Journal of China Academy of Electronics and Information Technology, 2023, 18(3): 248-252.
[9] 陈勇, 侯德亭, 齐国雷, 等. 分形海面电磁散射特性的基尔霍夫近似[J]. 信息与电子工程, 2009, 7(5): 409-412.
CHEN Y, HOU D T, QI G L, et al.Electromagnetic Scattering on Fractal Sea Surface Using Kirchhoff Approximation[J]. Information and Electronic Engineering, 2009, 7(5): 409-412.
[10] 王志霞, 董妍汝, 芦冏耀, 等. 舰载雷达多天线辐射特性和EMC特性分析[J]. 舰船科学技术, 2023, 45(23): 145-148.
WANG Z X, DONG Y R, LU J Y, et al.Analysis of Radiation Characteristics and EMC Characteristics of Multiple Antennas in Ship Radar[J]. Ship Science and Technology, 2023, 45(23): 145-148.
[11] 张龙刚. S波段多普勒雷达海浪提取关键技术研究[D]. 武汉: 武汉大学, 2016.
ZHANG L G.Research on Key Technology of Wave Extraction by S-Band Doppler Radar[D]. Wuhan: Wuhan University, 2016.
[12] DSU. Ocean Wave Inversion Based on Airborne IRA Images[J]. Remote Sensing, 2021, 13(15): 2987-2999.
[13] FENG J, XIAO Z, ZHANG B, et al.Retrieval of Ocean Wave Parameters from X-Band Marine Radar Images Using an Improved PM Model[J]. Remote Sensing, 2022, 14(15): 3561.
[14] 王静. X-波段雷达近海海浪频谱反演的神经网络模型[J]. 雷达科学与技术, 2020, 18(4): 376-382.
WANG J.Neural Network Model for Ocean Wave Spectrum Inversion Based on X-Band Radar[J]. Radar Science and Technology, 2020, 18(4): 376-382.
[15] WU K, LI X M.Deep Learning for Retrieving Omni-Directional Ocean Wave Spectra from Spaceborne Synthetic Aperture Radar[J]. Remote Sensing of Environment, 2024, 314: 114386.
[16] ZHAO C, DENG M, CHEN Z Z, et al.Ocean Wave Parameters and Nondirectional Spectrum Measurements Using Multifrequency HF Radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4204413.
[17] 黄家杰. 基于机器学习的海浪动态反演方法研究[D]. 大连: 大连海事大学, 2024.
HUANG J J.Research on Ocean Wave Dynamic Inversion Method Based on Machine Learning[D]. Dalian: Dalian Maritime University, 2024.
[18] HASHEMI S, SHAHIDI R, GILL E W.Extraction of the Significant Wave Height from Synthetic HF Radar Data Acquired on a Floating Platform[J]. IET Radar, Sonar & Navigation, 2023, 17(11): 1639-1645.
[19] CAO C H, BAO L W, GAO G, et al.A Novel Method for Ocean Wave Spectra Retrieval Using Deep Learning from Sentinel-1 Wave Mode Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4204016.
[20] ZHANG C, SUN R, HU J, et al.Cross-Modal Attention Fusion for Radar Image and Doppler Spectrum in Ocean Wave Prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-13.
[21] SAVIANO S, BIANCARDI A A, UTTIERI M, et al.Sea Storm Analysis: Evaluation of Multiannual Wave Parameters Retrieved from HF Radar and Wave Model[J]. Remote Sensing, 2022, 14(7): 1696.
[22] XIE J H, YAO G W, SUN M L, et al.Ocean Surface Wind Direction Inversion Using Shipborne High-Frequency Surface Wave Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1283-1287.
[23] 黄青, 张兵, 徐子君, 等. 基于舰载X波段雷达图像的浪高反演方法研究[J]. 海洋学报, 2023, 45(2): 110-120.
HUANG Q, ZHANG B, XU Z J, et al.Wave Height Inversion from X-Band Shipborne Radar Images[J]. Acta Oceanologica Sinica, 2023, 45(2): 110-120.
[24] 李根, 李文海, 刘勇, 等. 航空电子设备PHM关键技术研究综述[J]. 装备环境工程, 2025, 22(3): 33-43.
LI G, LI W H, LIU Y, et al.Review of Key Technologies for PHM in Avionics Equipment[J]. Equipment Environmental Engineering, 2025, 22(3): 33-43.
[25] 张明. 状态—空间模型移动平台声—海反演: 理论、方法与系统[D]. 杭州: 浙江大学, 2015.
ZHANG M.Acoustic-Sea Inversion of Mobile Platform Based on State-Space Model: Theory, Method and System[D]. Hangzhou: Zhejiang University, 2015.
[26] SCHMIDT A B, POKHREL P, ABDELGUERFI M, et al.Forecasting Buoy Observations Using Physics-Informed Neural Networks[J]. IEEE Journal of Oceanic Engineering, 2024, 49(3): 821-840.
[27] 陈虹丽. 海浪信号的实时仿真和谱估计[J]. 系统仿真学报, 2021, 33(6): 1245-1252.
CHEN H L.Real-Time Simulation and Spectrum Estimation of Ocean Wave Signal[J]. Journal of System Simulation, 2021, 33(6): 1245-1252.
[28] LI M, ZHANG L, WU X B, et al.Ocean Surface Current Extraction Scheme with High-Frequency Distributed Hybrid Sky-Surface Wave Radar System[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4678-4690.
[29] AL-HABASHNEH A A, MOLONEY C, GILL E, et al. An Adaptive Method of Wave Spectrum Estimation Using X-Band Nautical Radar[J]. Remote Sensing, 2015, 7(12): 16537-16554.
[30] 许荞晖, 张彦敏, 王运华. 基于SAR图像速度聚束调制的海浪反演研究[J]. 海洋学报, 2021, 43(12): 111-121.
XU Q H, ZHANG Y M, WANG Y H.Ocean Wave Inversion Based on the Velocity Bunching Modulation of SAR Image[J]. Haiyang Xuebao, 2021, 43(12): 111-121.
[31] WANG C, ZHANG L, NIU J, et al.Accurate Direction Finding for Shipborne HFSWR through Platform Motion Compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5110917.
[32] PARKS A N, SAMPLE A P, ZHAO Y, et al.A Wireless Sensing Platform Utilizing Ambient RF Energy[C]// 2013 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet). Austin: IEEE, 2013.
[33] ZHU L F, YANG F, YANG Y F, et al.Designing Theoretical Shipborne ADCP Survey Trajectories for High-Frequency Radar Based on a Machine Learning Neural Network[J]. Applied Sciences, 2023, 13(12): 7208.
[34] CHEN H, XU X, QIN Z, et al.The Combination of Spectral Partitioning and Numerical Modeling: A New Strategy for Reconstructing the Wave System[J]. Ocean Engineering, 2021, 237: 109493.
[35] ZHANG B W, GUO J Z, LI Z W, et al.A Review for Retrieving Wind Fields by Spaceborne Synthetic Aperture Radar[J]. Journal of Sensors, 2022, 2022(1): 7773659.
[36] ZHANG X B, XIE J H, YAO G W, et al.Extraction of Significant Wave Height from Spreading First-Order Bragg Peaks of Shipborne High-Frequency Surface Wave Radar with a Single Antenna[J]. Remote Sensing, 2025, 17(6): 1006.
[37] LYU J, WANG H, ZHANG Y, et al.Ocean Wave Parameter Prediction Using Transformer Networks with Multi-Task Learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5300214.
[38] NIE J, ZUO Z J, LIANG X Y, et al.Multimodal Issues and Key Technologies in Ocean Observation Data: A Review[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 19333-19362.
[39] JOSHI G P, ALENEZI F, THIRUMOORTHY G, et al.Ensemble of Deep Learning-Based Multimodal Remote Sensing Image Classification Model on Unmanned Aerial Vehicle Networks[J]. Mathematics, 2021, 9(22): 2984.
[40] 陈维, 李晓峰, 张海龙, 等. 基于Sentinel-1 SAR数据的海浪参数反演算法研究[J]. 海洋学报, 2022, 44(9): 156-167.
CHEN W, LI X F, ZHANG H L, et al.Research on Ocean Wave Parameter Inversion Algorithm Based on Sentinel-1 SAR Data[J]. Acta Oceanologica Sinica, 2022, 44(9): 156-167.
[41] WANG M Q, WANG D N, XIANG Y F, et al.Fusion of Ocean Data from Multiple Sources Using Deep Learning: Utilizing Sea Temperature as an Example[J]. Frontiers in Marine Science, 2023, 10: 1112065.
[42] CHEN Q, WANG N, CHEN Z.Simultaneous Mapping of Nearshore Bathymetry and Waves Based on Physics-Informed Deep Learning[J]. Coastal Engineering, 2023, 183: 104337.
[43] LI J X, HONG D F, GAO L R, et al.Deep Learning in Multimodal Remote Sensing Data Fusion: A Comprehensive Review[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102926.
[44] CHEN K Y, ZHU L Z, CHEN S, et al.Deep Residual Learning in Modulation Recognition of Radar Signals Using Higher-Order Spectral Distribution[J]. Measurement, 2021, 185: 109945.
[45] MIAO Q, YAN Q S, QI J P, et al.Fusion of Multi-Source Wave Spectra Based on BU-NET[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 134: 104195.

PDF(1607 KB)

Accesses

Citation

Detail

段落导航
相关文章

/